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Abstract. A class of completely positive maps are constructed which perform an approximate
cloning of arbitrary states of a multi-mode quantum oscillator. Inside this class we find the optimal
maps which do the cloning with greatest accuracy. The cloning errors appear in the characteristic
functions of the states as additive Gaussian noise. The construction is extended to multiple clones,
and it is shown that the minimal noise has an upper bound as the multiplicity goes to infinity. It is
also shown that the construction is closely related to the formalism for linear quantum amplifiers
and beamsplitters used in quantum optics.

1. Introduction

The no-cloning theorem points to one of the fundamental and characteristic differences between
classical and quantum information. The theorem says that there is no way of constructing
an apparatus capable of accepting an arbitrary quantum state as input, and as output giving
back the original state plus a copy of some of the information in it. In particular, it is
not possible to produce exact copies of the input states while retaining the originals intact.
This impossibility is a direct consequence of the linearity and non-commutativity of quantum
theory.

A number of different versions of no-cloning theorems have been published, e.g. [1–5].
In particular, the no-broadcasting theorem by Barnum et al [4] is a very general result. The
idea of broadcasting is that the original state may be a mixed state, and that the two states
in the output are partial states of a composite system, where the full state will inevitably
be entangled in non-trivial cases. In this paper we will use this approach to the copying
problem, and the terms ‘clone’ and ‘copy’ will be used interchangeably. We will also
include the final state of the input system in the clones, the number of which will be two
or more.

There have been a number of studies on copying machines which are optimal in the sense
of producing a final state where the partial states of the clones are as close to the input state
as quantum theory will allow [6–16]. The analysis of the possible final entangled states of the
clones is complex even if we restrict ourselves to spin- 1

2 systems. The problem of classification
of cloning operations and the analysis of their accuracy is made more tractable if we restrict
the maps to a set which can be parametrized in a useful way. In this paper we introduce a set
of cloning maps which have a simple parametrization and which act in a particularly simple
way on the characteristic function of the state.
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The basic idea is that the cloning apparatus must contain degrees of freedom which are
not included in the description (as in the case of a measuring instrument), thus the cloning
maps represent the dynamics of an open system, and they belong to the scheme of operational
quantum theory [17]. It follows that the cloning operations will be completely positive (CP)
maps from the space of initial states to the space of entangled final states [10].

The layout of the paper is as follows. Sections 2 and 3 give a short introduction to
the mathematical apparatus used. Section 4 defines a family of Gaussian (quasi-free) CP
maps in terms of matrix-valued parameters. It is convenient to introduce them as acting
on the observables (Heisenberg picture), through their action on the Weyl operators which
represent the integrated form of the canonical commutation relations (CCR). They are, in fact,
defined on all observables in the Hilbert space, and by the standard duality on the full set
of input quantum states defined by density matrices. There is a simple convex structure and
partial order on this class of maps. In this structure there are ‘extreme’ or ‘minimal’ maps
with minimal noise. The value of this minimal noise is related to the uncertainty product
in coherent and squeezed states. In general, the product of two minimal maps will not be
minimal. Section 5 introduces Gaussian CP maps which create a pair of clones out of a
single original system. In section 6 we can then apply a simple criterion for finding the maps
giving the most accurate copies: the maps should be minimal in the sense defined in section 5.
The thus defined cloning maps are optimal in the sense of preserving the expectations of the
canonical variables and adding minimal noise to their variances. This criterion can be applied
both to the entangled final state of the pair, and in a more restrictive way, to each of the
clones.

In section 7 the method is extended to the production of multiple clones, and we can see
how the quality of the clones will go down with the multiplicity. However, the value of the
noise has a limit as the multiplicity goes to infinity which is just twice the value for the twofold
cloning. The multi-clone state is highly correlated, and a quantitative entropy measure for this
is calculated.

In section 8 we describe the relations between the present formalism and the standard
theory of linear amplifiers and beamsplitters in quantum optics. Using a beamsplitter and
amplification of the outgoing beams we can construct a cloning apparatus, but one with a noise
which is not minimal.

Finally, in the appendix the partial order and convex structures of the Gaussian states and
CP maps are described in some detail.

2. Weyl form of the CCR

In this section the necessary notation for the CCR is introduced, for more details see, e.g.,
[18, 19]. Let there be given a 2n-dimensional real Hilbert space H, with vectors denoted by
x, y, . . . and a symplectic (real skew-symmetric bilinear) form σ(x, y) defined on H. In the
standard representation of the CCR and for n = 1 the choice is

σ(x, y) = 1
2 h̄(x1y2 − y1x2).

In the following we will set h̄ = 1. The form σ is defined by a real skew-symmetric matrix
S: σ(x, y) = 〈x|S|y〉. Using unitary Weyl operators W(x) = W(−x)† acting in a separable
complex Hilbert space K, we can write the CCR in the Weyl form

W(x)†W(y) = W(y − x) eiσ(x,y) = W(y)W(x)† e2iσ(x,y). (1)
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In terms of the canonical operators {X1, . . . , X2n} acting in K we have

W(x) = exp{−iX(x)} X(x) :=
2n∑
j=1

xjXj

and the self-adjoint operators X(x) satisfy the CCR

[X(x),X(y)] = 2i〈x|S|y〉1lK.
We will assume the matrix S to be non-degenerate, in which case it is possible to choose the
following normal form, in terms of the n× n unit matrix

S = 1
2

(
0 1ln

−1ln 0

)
. (2)

Then the real linear transformations V in H which leave the CCR invariant

x 	→ V x ∀x ∈ H S 	→ V †SV = S

are the Bogoliubov (symplectic) transformations, forming the real symplectic groupSp(2n,R).
The Weyl operators form an irreducible set of operators in K, and their linear combinations

span the algebra B(K) of all bounded operators in K. We note that the expression (1) has the
following obvious positive-definiteness property (the scalar product is that of K):∑

j,k

(ϕ∗
j ,W(xj )

†W(xk)ϕk) � 0 ∀xj ∈ H ϕj ∈ K. (3)

3. Gaussian states

This section recalls the most important facts about Gaussian states. See the appendix for
more details, which include some derivations. A state ρ is uniquely defined by the quantum
characteristic function, i.e. the expectation of the Weyl operator

χ(ρ, x) := 〈W(x)〉ρ = χ(ρ,−x)∗ x ∈ H
a continuous, complex-valued function of x [19, 20]. We assume it to be normalized:
χ(ρ, 0) = 〈1l〉ρ = 1, and write it as an exponential

χ(ρ, x) = exp{−i〈x|ξ〉 + f (x)} (4)

where ξ ∈ H and f is a continuous function satisfying f (0) = 0, f (x)∗ = f (−x). The
positivity of a state means that the expectation maps the positive-definite operator expression
(1) into a positive-definite form. This leads to a positivity condition on (4): ρ is a state if and
only if ∑

j,k

λ∗
jλkφ(xj , xk) � 0 ∀xj ∈ H λj ∈ C

φ(x, y) := 〈W(x)†W(y)〉ρ = χ(ρ, y − x) exp{iσ(x, y)}.
(5)

The linear part 〈x|ξ〉 turns out to give a trivial contribution to this condition, it can be left out
in most contexts. The state defined on the Weyl operators extends to a normal state (density
operator) defined on all of B(K).

There is an important class of states defined by real quadratic forms

f (x) = − 1
2 〈x|F |x〉
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with F a real symmetric matrix. The condition (5) can then be transformed into the simpler
but equivalent matrix relation (see Holevo [19] equation (4.14) and theorem 5.1)

F + iS � 0. (6)

This inequality ensures the positivity of the state, the normalization is automatically fulfilled
as χ(ρ, 0) = 1, and so is the continuity. We note that the two inequalities F ± iS � 0 are
equivalent, and that we can add them to conclude that F � 0. (For simplicity a Hermitian
matrix with non-negative eigenvalues will be called positive; if it is non-degenerate they are
strictly positive.)

There are other, equivalent, ways of writing the inequality (6). We can represent the
complexification of the real Hilbert space H as a 4n-dimensional real Hilbert space H ⊕ H,
and (6) takes the form(

F S

S† F

)
� 0. (7)

It is shown in the appendix that this inequality is equivalent to

0 � S†F−1S � F. (8)

The class of states defined by (4) and (6) we can call Gaussian, as in [19, 20], or quasi-free,
a term used in the mathematical literature [21]. The average of the canonical operator is given
by the linear term in the exponential of (4): 〈Xk〉 = ξk . This term is inessential and removed
by a translation implemented by a unitary Weyl operator

Xk 	→ Xk − ξk1l. (9)

In the following we can restrict the attention to states centred at the origin (〈Xk〉ρ = 0) in most
places.

The role of the matrix F and the inequality (6) is readily understood when expressed in
terms of the canonical operators: the variance matrix (for centred states)

〈XjXk〉ρ = 1
2 〈{Xj,Xk} + [Xj,Xk]〉ρ = Fjk + iSjk (10)

must be positive. Like the Gaussian random variables of probability theory the Gaussian states
are uniquely defined by their first and second moments. The higher-order moments are given
by a simple formula (see [20] equation (4.4.119)).

The set of matrices F satisfying (6) for given S (and hence (7) and (8)) evidently form a
convex set, and there is a partial order defined by the matrix order:

F1 � F ⇔ F − F1 � 0.

The matrix F is an extreme element in this convex set if and only if it satisfies

F = S†F−1S (11)

and it is known that all such elements F are conjugate under symplectic transformations [21].
In fact, with the standard representation of S one solution is F0 = 1l/2, and the general
solution F = F1/2F0F1/2 where F = 2F is an element of the symplectic group Sp(2n,R).
If we include all translations, these states are the multi-mode coherent states for F = 1l,
and generally the squeezed coherent states. They are also the pure Gaussian states, and the
minimum uncertainty states in the sense that they give equality in the Robertson–Schrödinger
inequality (Robertson intelligent states) [22, 23].
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For general F satisfying (6) there are also non-Gaussian states with the same variance
matrix (10), but if F satisfies (11) then the squeezed coherent states are the only solutions.
This is illustrated by taking a convex combination of two Gaussian states: the characteristic
function

χ(ρ, x) = pχ(ρ1, x) + (1 − p)χ(ρ0, x) 0 < p < 1

will not be that of a Gaussian state unless the two states are the same. However, there is a
Gaussian state defined by F = pF1 + (1 − p)F0 with the same variance matrix. Of all states
with the same variance matrix the Gaussian state is that of maximum entropy [24].

It is interesting to note the simple relation between the inequality (8) and the entropy of
the state. Recall that the entropy of a quantum state

H(ρ) := − tr ρ ln ρ

is a measure of the deviation from purity: the entropy is zero for a pure state and positive for
a mixed state due to the concavity

H(pρ1 + (1 − p)ρ0) � pH(ρ1) + (1 − p)H(ρ0) 0 < p < 1

with equality if and only if ρ0 = ρ1. In [24] a formula for the entropy of a Gaussian state is
given. First note that from (8) follows directly the following inequality:

1l � M := F 1/2S−1†FS−1F 1/2

where M = 1l for pure states. From this it follows that

N := 1
2 (M

1/2 − 1l) � 0.

The formula for the entropy of the Gaussian state ρ defined by F is then

H(ρ) = 1
2 tr{(N + 1l) ln(N + 1l)−N lnN}. (12)

In [24] the entropy is defined in terms of the matrix M ′ = S−1†FS−1F = F−1/2MF 1/2, but
then tr f (M ′) = tr f (M) for any function f .

4. Gaussian CP maps

We define a family of Gaussian (quasi-free) maps by their action on the Weyl operators

T : W(x) 	→ W(Ax) eg(x) (13)

where A is a real 2n × 2n matrix, and g is a quadratic form satisfying g(−x) = g(x)∗.
Because the Weyl operators span B(K), this relation also defines T on B(K). These maps
are the quantum analogues of the convolutions with Gaussian measures, and the dual maps
acting on the state space maps Gaussian states into themselves. The map (13) is completely
positive (CP) precisely when the positive-definite quantity (1) is mapped into a positive-definite
quantity, i.e. when the expression

W(A(y − x)) eiσ(x,y)+g(y−x) = W(Ax)†W(Ay) eiσ(x,y)−iσ(Ax,Ay)+g(y−x) (14)

satisfies (3) [25, 26].
We note that the translations (9) are of the form (13) (A = 1l, g(x) = i〈x|ξ〉). In the

present context we can leave these out, and it is enough to look at quadratic forms g without a
linear term, defined by a real symmetric matrix G:

g(x) = − 1
2 〈x|G|x〉.
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From (14) we obtain an inequality similar to (5); again this can be translated into an
inequality for the exponent. This condition on (A,G) for the map to be CP was given in
[25, 26]

G + iS − iA†SA � 0. (15)

In particular, putting A = 0 we obtain the condition for a Gaussian state, and all states
are mapped into the single state defined by F = G satisfying (6). If we let A be a symplectic
transformation, i.e. A†SA = S, then we can choose G = 0, which means that the map (13)
has an inverse which is also CP. In fact, from the expression (13) we can write down the
form of the inverse transformation and see that it is CP if and only if G and (15) are both
zero.

The maps (13) act in a very simple way on the characteristic functions of the states:

χ(ρ, x) 	→ χ(ρ ′, x) := χ(ρ,Ax) eg(x). (16)

In particular, for a Gaussian state ρ defined by the pair {ξ, F }, we find that the final state ρ ′ is
defined by the pair {ξ ′, F ′} where ξ ′ = ξA and

F ′ = A†FA +G (17)

and that the variance matrix (10) for ρ ′ is

A†(F + iS)A +G + iS − iA†SA � 0. (18)

In the standard formalism of quantum optics the same mathematics is represented in a
different but equivalent form [27]. The action of an environment of passive and active linear
optical elements on a finite number of modes of the EM field is described by transforming the
canonical operators for a system plus environment

Xj 	→ X′
j =

∑
k

XkAkj +Nj

and the CCR is assumed for the operators {X′
j }. Using this method one obtains the formulae

above by imposing that the ‘noise’ symbols N has a variance matrix 〈NjNk〉 equal to (15);
here the average denotes an expectation in a ‘reservoir’ state. This matrix describes the noise
coming from the interaction with the environment, but it is the quantum nature of the system
which implies that this noise cannot be zero.

The non-commutative, quantum nature of the system also means there is only a partial
order on the noise matrices, and no unique definition of the minimal noise. Instead there is
a family of minimal G satisfying (15) for the given values of S,A (see the appendix for the
definition). These pure (extremal) solutions G of (15) are obtained in analogy with the pure
Gaussian states. We can write (15) in the familiar form

0 � K†G−1K � G K := A†SA− S = −K† (19)

and it is shown in the appendix that the minimal solutions of (19) for given (S,A) are the
solutions of

G = K†G−1K. (20)

It is evident from (18) that the minimal solutions for the map give a minimal variance matrix
for the final state, given the initial state and (S,A).

The family of Gaussian CP maps (for given H, S) is closed under composition of maps:
let there be two such maps T1, T2 defined by matrices Aj ,Gj , j = 1, 2, then the composite
map T = T1T2 is defined by

A = A1A2 G = G2 + A†
2G1A2.
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We also find that K = K2 + A†
2K1A2 which means that (15) is fulfilled by T if this is true

for T1 and T2. However, if both T1 and T2 satisfy the minimal noise condition (20) this it not
necessarily so for the composite map T . It is true in some cases, for instance if one of the maps
is a reversible symplectic transformation, i.e.K1 orK2 is zero, and the corresponding minimal
noise matrix is zero. Consider the case whereK1 andK2 (and henceK) are non-singular. (The
details are a bit more complex for singular K1 and K2, and we will leave them out.) From the
appendix we know that the minimality condition (20) is satisfied by G if and only if G± iK
satisfy

(G± iK)G−1(G∓ iK) = 0 (21)

and this is equivalent to G± iK being positive matrices of rank n. Because

G± iK = G2 ± iK2 + A†
2(G1 ± iK1)A2

we see that the composite map is minimal if and only if A†
2(G1 ± iK1)A2 has a support

projection contained in that ofG2 ± iK2 (of rank n). For positive matrices A,B their support
projections satisfy

AB = 0 ⇔ suppA ⊥ suppB.

If we use this lemma on (21) applied to G2 ± iK2 we will find that the conditions on the
supports are fulfilled precisely when it holds that

A
†
2(G1 ± iK1)A2G

−1
2 (G2 ∓ iK2) = 0.

These are then necessary and sufficient conditions for the composite map to be minimal; it
is not satisfied in general, not even in the case T1 = T2. A simple example is provided by
the minimal maps (with standard form for S) Aj = aj1l, Gj = |a2

j − 1|1l/2. We find that
the product is minimal if and only if |a1|, |a2| are either both >1 or both <1 or one of them
= 1.

5. The cloning map

A cloning map will take the initial-state space of the oscillator to the final-state space of
two similar oscillators. We will treat the two final systems in a symmetric way, making no
distinction between the ‘original’ and the ‘clone’. In the Heisenberg picture the map goes the
opposite way, from the final system observables to those of the initial system.

We choose the maps to be of the form defined in section 4, for the reasons indicated in
the introduction: this set has a simple parametrization and each map acts in a simple way on
the characteristic function of the state. These facts allow us to find among this set the best
cloning maps; they map each initial state into two clone states which are as close to the initial
state as possible. Here we let ‘close’ mean that they have the same averages for the canonical
operators, while as little noise as possible is added.

The Heisenberg picture version of the cloning map is then assumed to be a Gaussian CP
map T : B(K ⊗ K) → B(K) defined by

W(x1, x2) 	→ W(A1x1 + A2x2) eg(x1,x2) (22)

where g is again assumed to be quadratic, and A1, A2 are real 2n × 2n matrices. Again the
quadratic form g can be written as matrix elements

g(y1, y2) = − 1
2 {〈y1|G1|y1〉 + 〈y2|G2|y2〉 + 〈y1|K|y2〉 + 〈y2|K†|y1〉}
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where G1,G2,K are real matrices and we can choose G1,G2 to be symmetric. We find that

W(x1, x2)
†W(y1, y2) 	→ W(A1x1 + A2x2)

†W(A1y1 + A2y2) eiξ(x1,x2,y1,y2)

where the exponent is still a quadratic form

g(y1 − x1, y2 − x2) + iσ(x1, y1) + iσ(x2, y2)− iσ(A1x1 + A2x2, A1y1 + A2y2).

Using (15) the CP property of the map T is translated into the following matrix inequality:(
G1 K

K† G2

)
+ i

(
S 0

0 S

)
− i

(
A

†
1 0

A
†
2 0

)(
S 0

0 S

)(
A1 A2

0 0

)
� 0

and in simplified form(
G1 + iS − iA†

1SA1 K − iA†
1SA2

K† − iA†
2SA1 G2 + iS − iA†

2SA2

)
� 0. (23)

Perfect cloning of all states would be equivalent to the following relations for the partial
transformations on the algebras of observables:

T [W(x, 0)] = W(x) T [W(0, y)] = W(y).

The no-cloning theorems forbid these relations to hold exactly, but we can demand that the
two transformations are as close to the identity map as is possible. With this end in mind it is
clear that we should choose A1 = A2 = 1l in (22). This choice implies that the averages 〈Xj 〉
will be the same for both clones as for the input state; it also means that the cloning process is
invariant under the translations (9). With this choice the cloning map (22) is

W(x1, x2) 	→ W(x1 + x2) eg(x1,x2). (24)

If we apply the cloning process to a Gaussian state defined by a matrix F satisfying (6), we
obtain a final state which is a Gaussian defined by the real symmetric matrix(

F +G1 F +K

F +K† F +G2

)

which satisfies (7):(
F +G1 + iS F +K

F +K† F +G2 + iS

)
� 0.

The partial states of the two clones are also Gaussian and defined by the diagonal terms
F +G1 and F +G2, respectively. HereG1,G2 are the ‘noise’ terms coming from the cloning
process, we will minimize them in next section. The off-diagonal term F + K in the block
matrix measures the correlation between the two clones in the final state. We can have an
uncorrelated final state only for a single value of F , setting K = −F .

From (24) we also find how the characteristic function transforms from the initial state ρ
into a final state ρ ′:

χ(ρ, x) 	→ χ(ρ ′, x1, x2) := χ(ρ, x1 + x2)e
g(x1,x2).

The characteristic functions for the partial states are obtained from χ(ρ ′, x1, x2) by setting one
of the variables equal to zero, and they are just the input characteristic function multiplied by
a Gaussian

χ(ρ ′
1, x) = χ(ρ ′, x, 0) = χ(ρ, x) eg(x,0) χ(ρ ′

2, x) = χ(ρ, x) eg(0,x). (25)
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The Wigner function is a Fourier transform of the characteristic function [20]

W(ρ, ξ) := (2π)−n
∫

dx χ(ρ, x) e−i〈x|ξ〉 ξ ∈ H

with normalization
∫

dξ W(ρ, ξ) = 1. From (25) we can directly find the Wigner functions
of the partial states, they are simply convolutions of the input Wigner function by Gaussian
distributions:

W(ρ ′
k, ξ) =

∫
dηW(ρ, ξ − η)Gk(η) k = 1, 2

Gk(ξ) := (2π)−n(detGk)
−1/2 exp{− 1

2 〈ξ |G−1
k |ξ〉}.

From the Wigner function we can recover the density matrix of the state in a suitable basis.
This is done by inverting the familiar Wigner formula which gives the Wigner function as the
Fourier transform of a family of density matrix elements [20]. The resulting formulae are
cumbersome in the multimode case, and we leave them out.

We note that for general states the variance matrix (10) is found from the characteristic
functions (differentiating twice), and we see from (25) that the cloning map acts on it in the
same way as it does for the Gaussian states.

6. Noise in the cloning process

The cloning map (24) still has an unspecified exponent g, which includes the noise terms
G1,G2 which enter into the partial states of the two clones. We can now define what we
mean by a maximal fidelity for the cloning map: a minimal choice of the noise terms G1,G2

consistent with (23). We will first describe the minimal property of the noise added in the
final two-clone state, according to the general scheme set out in the appendix, and which was
already used in section 5. After that it is a simple modification to find the minimal noise added
to the two clones separately.

Setting A1 = A2 = 1l the matrix inequality (23) is simplified into(
G1 K − iS

K† − iS G2

)
� 0. (26)

This inequality is of the standard form G(2) − iS(2) � 0 if we introduce

G(2) :=
(
G1 K

K† G2

)
S(2) =

(
0 S

S 0

)
.

We then obtain the equivalent variant of (26) from (19), S†
(2) G

−1
(2) S(2) � G(2), and the minimal

solutions of this inequality are found in the appendix to be the solutions of

S
†
(2) G

−1
(2) S(2) = G(2). (27)

Again, using the standard form for S we find one solution of (27) to be G(2)0 = 1l4n/2; a full
set of solutions of (27) is generated as follows. It is shown in the appendix that for any real
symmetric matrix B we obtain a solution from equation (A3), here it has the form

G(2) = 1
2 exp {B − 4S†

(2)BS(2)} (28)

it is also proved there that every solution of (27) is of this form.
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The solutions of (28) give a minimal noise in the composite two-system final state. In
practice we are likely to be interested in minimizing just the noise terms G1,G2 in the two
partial states. We do this by setting K = 0; this corresponds to choosing a block diagonal B.
In order to see that this is true we note that using the methods of the appendix, equation (26)
is equivalent to

0 � (K† − iS)G−1
1 (K − iS) � G2.

We can also complex conjugate this inequality, using S† = −S, sum the two inequalities and
divide by 2 to find that

0 � K†G−1
1 K + S†G−1

1 S � G2. (29)

From (29) and the calculations in the appendix it is clear that if we want to make the noise
terms G1,G2 for the two clones as small as possible, then we should first choose K = 0,
reducing the quadratic form to

g(y1, y2) = − 1
2 {〈y1|G1|y1〉 + 〈y2|G2|y2〉}.

Setting K = 0 in (29) we obtain the following inequality:

0 � S†G−1
1 S � G2. (30)

For any choice of a real positive non-degenerate G1 there is a minimal solution of (30):

G2 = S†G−1
1 S. (31)

The solutions of (31) also satisfy (27) for K = 0. We obtain a family of symmetric
solutions setting G1 = G2 = G where G satisfies (11). A larger set of solutions is given
by λG1 = λ−1G2 = G,λ > 0, where G again satisfies (11).

We recall from the previous section that if the initial state is defined by the matrix F , then
the partial states of the two clones are defined by F +G1 and F +G2, and their characteristic
functions are given by (25). If F is also a solution of (11), representing a pure initial state,
then we can see how an optimal cloning process defined by minimal noise terms G1,G2 will
make the clones mixed states, but also that we have the choice of putting more of the noise in
one of the clones, and less in the other.

For general solutions of (31) we can find a transformation in Sp(2n,R) which transforms
G1 to a diagonal form, while preserving the normal form (2) of S [28, 29]. From (31) we then
find that G2 will also be diagonal. There is then real positive n× n diagonal matrices D1,D2

such that

G1 = 1
2

(
D1 0

0 D2

)
G2 = 1

2

(
D−1

2 0

0 D−1
1

)
. (32)

In order to see the consequences of this structure as simply as possible, consider the case n = 1.
It is informative to display the solution in the squeezed form

G1 = 1

2λ

(
κ 0

0 κ−1

)
G2 = λ2G1.

We can thus let the two clones be of different fidelity, but we cannot make two clones which
have high fidelity for two complementary quadratures of the same degree of freedom.

We can easily introduce a formal classical limit by setting h̄ = 0; this means that S = 0,
and that all the positivity conditions are reduced to G1 � 0,G2 � 0. In particular, we can
then choose the Gaussian functions G1,G2 in the convolution of the Wigner functions to have
as small variances as we like, and there is no restriction on the accuracy of the copies.
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7. Multiple clones

It is interesting to generalize the formalism to the generation of multiple clones. We will see
that the simultaneous creation of multiple clones is more efficient than a succession of cloning
operations. If we want m > 2 clones in all, the map (24) is replaced by

W(x1, x2, . . . , xm) 	→ W(x1 + x2 + · · · + xm) eg(x1,x2,...,xm). (33)

We write the exponent in the form

g(x1, x2, . . . , xm) = − 1
2

∑
k

〈xk|Gk|xk〉 − 1
2

∑
j �=k

〈xj |Kjk|xk〉

where Gk,Kjk = K
†
kj are real matrices of dimension 2n × 2n, and j, k = 1, . . . , m. In the

case m = 2 we could choose the cross terms to be zero for a minimal solution, i.e. setting
K = 0 in (26); in the general case we have to keep them. Introduce the real matrices, of
dimension 2mn× 2mn:

G(m) = δjk Gk + (1 − δjk)Kjk S(m) = (1 − δjk) S. (34)

For eachm � 2 the matrixG(m) is symmetric, S(m) is skew-symmetric and non-degenerate, in
fact, det S(m) = 2−mn(m−1)2n. The inequality (26) is replaced by either of the two equivalent
relations

G(m) − iS(m) � 0

(
G(m) S(m)

S(m) G(m)

)
� 0 (35)

which again are equivalent to

0 � S
†
(m)G

−1
(m)S(m) � G(m). (36)

We can then apply the same argument used in section 6, and in the appendix, to find a solution
to the condition for minimality

S
†
(m)G

−1
(m)S(m) = G(m). (37)

Again, there is one obvious solution G(m),0 = (S
†
(m)S(m))

1/2. With the standard representation
(2) of S we obtain after some calculations

G(m),0 = 1

2

(
m− 2

m
+ δjk

)
1l2n.

The two parts defined in (34) are then

Gk = m− 1

m
1l2n Kjk = m− 2

2m
1l2n. (38)

We see that in creating an increasing number of clones, the optimum accuracy of the cloning
becomes progressively worse, but with a bound asm → ∞ which is just twice that form = 2.
A simultaneousm-fold cloning is definitely better than a succession ofm− 1 twofold cloning
operations, but it comes at the price of a highly entangled final state.

We find a representation of the full set of minimal solutions using the methods described
in the appendix. Introduce the real, skew-symmetric and unitary matrix

V = G
−1/2
(m),0S(m)G

−1/2
(m),0 =

(
−δjk +

2

m

)
2S.
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For any real, symmetric 2mn× 2mn matrix B we find a solution of (37) using (A3):

G(m) = G(s) = G
1/2
(m),0 exp{B − V †BV }G1/2

(m),0 (39)

satisfies (37), and all minimal solutions are of this form.
We will not try to investigate this full set of minimal solutions, but only look at those

which are symmetric under the permutations of the m clones. These solutions are defined by
2n× 2n matrices G,K:

Gj = G Kjk = K ∀j, k = 1, . . . , m.

We must then choose the matrix B to have the same structure as G(m), the diagonal (j = k)

blocks of dimension 2n× 2n all the same, the off-diagonal (j �= k) blocks all the same. Some
relatively straightforward calculations give the full set of solutions in terms of two arbitrary
solutions F1, F2 of equation (11):

G = m− 1

m
(F1 + F2) K = 1

m
[(m− 1)F2 − F1].

If our goal is to minimize the noise term in each clone, that isG, it is clear from the discussion
of the convex structure in the appendix that we should pick F1 = F2. In particular, for m = 2
we then find K = 0 and thus the family of solutions given in section 6 for the symmetric
case.

We can now apply the entropy formula (12) to the final m-clone state to see that this is,
in fact, a highly correlated state. For simplicity we assume the initial state to be the pure state
defined by F0 = 1l/2, and the cloning map to be the minimal symmetric one defined above by
F1 = F2 = F0, hence

G = m− 1

m
2F0 K = m− 2

m
F0.

The final m-clone state is then defined by the 2mn× 2mn matrix

F(m) = F + δjkG + (1 − δjk)K =
[

2
m− 1

m
+ δjk

]
F0.

From this expression we can calculate the matrix N defining the entropy (12)

N = F(m) − 1
2 1l2mn = (m− 1)P ⊗ 1l2n

where every element of the m × m matrix P has the value 1/m. Thus P is a projection of
rank 1, consequentlyN has the eigenvaluesm−1 with multiplicity 2n, and 0 with multiplicity
2(m− 1)n. The entropy of the final state is then

H(ρ ′
(m)) = n {m lnm− (m− 1) ln(m− 1)}

and the asymptotic behaviour as the number of clones goes to infinity

H(ρ ′
(m)) → n lnm m → ∞.

Each of the clones has a partial state defined by the matrix

F = 3m− 2

m
F0

and the entropy is determined by the matrix

N = 2
m− 1

m
F0
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with the 2n-fold eigenvalue (m− 1)/m, hence

H(ρ ′
1) = n

m
{(2m− 1) ln(2m− 1)− (m− 1) ln(m− 1)−m lnm}

and the asymptotic value as m → ∞ is 2n ln 2. The correlation in the final state is measured
by the quantity mH(ρ ′

1)−H(ρ ′
(m)) which has the asymptotic value n(2m ln 2 − lnm).

It is clear from these calculations that the final state of the compositem-fold clone system
is highly correlated. This fact will let us use the cloning as the first stage in a ‘minimal
perturbation’ type of measurement process. We can then see the partial state of the clones
as the final state of the measured system, while the m − 1 other clones appear as a ‘pointer’
system where we can choose to make any quantum measurement. The investigation of this
aspect will be left to another occasion.

Without using the correlations, we can determine the final state onm−1 of the clones using
quantum tomography [30], while still retaining one ‘original’ in this state. Letting m → ∞
we will be able to do so with negligible error.

8. Amplifiers and beamsplitters

The formalism of Gaussian CP maps in section 4 can be used for a streamlined derivation of
important relations in quantum optics. When the canonical operators are those describing the
quadratures of one or more modes of the EM field, these transformations will describe linear
amplifiers and attenuators for light beams. Standard derivations use the CCR of the relevant
modes and their environment to derive the properties of the quantum noise (see, for instance,
[27, 31, 32]). Such considerations are automatically included in the description of the open
quantum system dynamics given by the formalism in section 4. Thus the relation (15) contains
the fundamental amplifier uncertainty principle of Caves [31]. However, due to the matrix
nature of the inequality, it sums up the different cases (phase preserving, phase conjugating,
multimode case, etc) in a simple way.

Matrix A describes the amplification or attenuation of a radiation mode due to the
interaction with the environment, while G is a measure of the noise introduced by the
amplification due to the quantum nature of the dynamics. Take a simple example, with a
single mode (n = 1), and the basis is chosen such that A is diagonal, in which case the family
of minimal G will also be diagonal. We find that (15) now reads(

G1 i(1 − A1A2)/2

−i(1 − A1A2)/2 G2

)
� 0

where Gj,Aj ∈ R, and that an equivalent form is G1G2 � (1 − A1A2)
2/4, which can be

compared with the relation (3.35) in Caves [31], with due regard of the different notation
(interchanging A and G and a renormalization). In particular, if A1A2 = 1 then the
transformation A is symplectic, i.e. preserves the CCR, and the lower bound on the noise
is zero.

There is also a considerable similarity of the cloning map approach of section 5 to the
formalism used in quantum optics to describe beamsplitters (see, e.g., [33]). In a lossless
beamsplitter two ingoing radiation beams, each with one or more modes, are transformed into
two outgoing beams in a reversible way, i.e. one conserving the CCR. In our formalism there is
first a reversible transformation from the Weyl operators of the two outgoing systems to those
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of the two incoming systems:

W(x1, x2) 	→ W(x ′
1, x

′
2)

x ′
1 = B11x1 + B12x2 x ′

2 = B21x1 + B22x2.

The conservation of the CCR says that

B
†
11SB11 + B†

21SB21 = B
†
12SB12 + B†

22SB22 = S B
†
11SB12 + B†

21SB22 = 0 (40)

(and the higher coefficients of the latter equation). If there is just the vacuum state in one of
the incoming beams, then we should average over this initial state (for the x ′

2 variable):

W(x ′
1, x

′
2) 	→ W(x ′

1) exp{f (x ′
2)}.

Comparing this expression with (22) we find that g(x1, x2) = f (B21x1 + B22x2) and finally

G1 = B
†
21FB21 G2 = B

†
22FB22 K = B

†
21FB22.

We can now compare with (23), using (40), to find that this expression is equal to(
B

†
21(F + iS)B21 B

†
21(F + iS)B22

B
†
22(F + iS)B21 B

†
22(F + iS)B22

)
� 0. (41)

It is clearly enough that F + iS � 0, which is fulfilled when we set the QHO ground state
for the incoming vacuum beam F = 1l/2. This condition is also necessary when the Bjk are
non-degenerate.

It is quite natural to ask if we can obtain the cloning maps in section 5 through the action
of an ideal beamsplitter followed by an amplification of the two output beams. We can choose
a symmetric beamsplitter and pick a phase shift (necessary to preserve unitarity)

B11 = B12 = −B21 = B22 = 1l√
2

and find G1 = G2 = F/2 = 1l/4. We then have to amplify each of the two outgoing
beams, setting A = √

2 1l, with a minimal noise matrix, from (15), which we can choose to be
G0 = F = 1l/2. The total noise matrix for each beam is thenG = G0 +A†FA/2 = 2F = 1l,
to be compared with the minimal noise G = F = 1l/2 given in section 6.
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Appendix

In this appendix we collect some useful results for the Gaussian states and Gaussian CP maps.
For more background material see, for instance, [19, 22, 23, 28, 29]. We return to the matrix
inequalities of the equivalent forms (6)–(8). The set of solutions to these inequalities (for a
given S) has a partial order and a convex structure. We need to identify the solutions which
are minimal in the partial order; these solutions can be interpreted as the pure Gaussian states
(section 3). It will be shown that the minimal solutions are precisely the solutions of the
equality (11). The method is then modified to deal with the inequalities (15), (26) and (35) for
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the Gaussian CP maps. The minimal solutions are the Gaussian CP maps with minimal noise
(section 4), and they satisfy relations like (20), (27) and (37).

In the following F and G denote real, symmetric and positive matrices in the 2n-
dimensional Hilbert space H. When S is the standard, non-degenerate symplectic form (2),
then any solution F of (7) must also be non-degenerate, i.e. all eigenvalues are strictly positive.
The invertible real transformation

V =
(

1l −F−1S

0 1l

)
det V = 1

gives to (7) an equivalent block-diagonal form

V †

(
F S

S† F

)
V =

(
F 0

0 F − S†F−1S

)
� 0

which is clearly equivalent to (8). Now assume that 0 � F � G. It is then known that
0 � G−1 � F−1. In order to see this, note first that it is obvious for G = 1l, then replace
F by G−1/2FG−1/2 to obtain the statement. It follows that if F satisfies (8), then so does
G. Furthermore, if F satisfies (8) and G satisfies the equality (11), i.e. S†G−1S = G, then
F = G. Thus we find that the solutions of (11) are minimal solutions of (8).

We can add a converse statement. If G satisfies (8) but S†G−1S �= G, then we can find
a F � G such that (11) holds. The calculation is simple: the real skew-symmetric matrix
S1 := G−1/2SG−1/2 is still non-degenerate, and

G1 := (S
†
1S1)

1/2 ⇒ S
†
1G

−1
1 S1 = G1 � 1l.

Then check that F := G1/2G1G
1/2 � G satisfies (11) with the original choice of S.

There are other useful characterizations of the solutions of (11). From (6) and (8) it follows
that det F � det S and that equality holds precisely for the solutions of (11) (see the appendix
of [22]). Introduce the self-adjoint matrices

W± := 1
2

{
1l ± iF−1/2SF−1/2

}
.

Using (8) and (11) we find that W+ +W− = 1l2n and that

W 2
± � W± W+W− � 0

where equality holds in the two inequalities precisely when (11) is fulfilled. Thus, for the
solutions of (11) the two matrices W± are two complementary projections, each of rank n.
From this it follows that F ± iS are two positive matrices which are of rank n precisely when
(11) is fulfilled.

If we use the standard representation (2) of S, then S†S = 1l/4, and one solution of the
minimality relation (11) is F0 = (S†S)1/2 = 1l/2. This choice in (4) gives the characteristic
function for a multimode coherent state (the vacuum state if ξ = 0). A way of finding the full
range of solutions of (11) is provided by the following argument. Normalize the matrix F to
determinant 1: F = 2F , use (2) for S, thus obtaining the form

F = 4S†F−1S

for (11). We can rewrite this relation as FSF = S, and with F� = F† = F we see
that F is a symplectic transformation. It also follows that F = F1/2F0F1/2, and this is a
solution of (11) for any positive symplectic transformation F . Thus the general solution of
(11) is a symplectic transform of the coherent minimal solution, i.e. a squeezed multimode
state.
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There is also a convex structure associated with the solutions of (8), and the equivalent (6)
and (7). If we have two solutions {F0, F1}, then for every 0 < p < 1 the convex combination
Fp = (1 − p)F0 + pF1 satisfies the same inequality. We say that F is an extreme element in
this convex structure when F = (1 − p)F0 + pF1 for some p implies that F = F0 = F1. It is
then easy to see that F is an extreme element if and only if it is a minimal solution. To show
this, first a little lemma: let A,B be positive and non-degenerate. For all 0 < p < 1 it holds
that

((1 − p)A + pB)−1 � (1 − p)A−1 + pB−1

with equality if and only if A = B. First, consider the case B = 1l, then the statement
follows from the spectral resolution forA. Then replaceA by B−1/2AB−1/2 and we obtain the
statement. We now know that

S†F−1S � (1 − p)S†F−1
0 S + pS†F−1

1 S � (1 − p)F0 + pF1 = F

where the first inequality is an equality if and only if F0 = F1. We conclude that if
F is minimal, then it is also extreme. Conversely, if it is not minimal, then there is a
non-zero real symmetric positive . such that F ± . are both solutions of (8), and then
F = (F +.)/2 + (F −.)/2.

In discussing the properties of Gaussian CP maps it is interesting to also apply the previous
arguments to the case where S is allowed to be degenerate, i.e. it is a general real, skew-
symmetric matrix. Let P be the support projection of S†S; it must be real and symmetric. We
must clearly let P be contained in the support of F such that the expression S†F−1S is well
defined. If we assume (8), we can use the inequality

(PFP )−1 � PF−1P

to conclude that PFP also satisfies (8). The proof of the inequality is simple. Let

|x〉 ∈ PH |y〉 := F−1|x〉 ∈ H |z〉 := (PFP )−1|x〉 ∈ PH.
Then the statement follows from

〈y − z|F |y − z〉 = 〈y|x〉 − 〈z|x〉 � 0 ∀|x〉 ∈ PH.
From this result it follows that for finding the solutions of (11) we can restrict ourselves to
matrices F in the subspace PH, and define the matrix inverse in this subspace. One solution
of (11) is still F0 = (S†S)1/2. Introduce the following matrices with support in PH:

F := F
−1/2
0 FF

−1/2
0 V := F

−1/2
0 SF

−1/2
0 .

We then find that V is real and skew-symmetric with V †V = −V 2 = P , while F is a real
positive (hence symmetric) matrix which satisfies

F = V †F−1V. (A1)

An explicit construction of all the solutions of (A1) proceeds as follows. First we note that any
positive F is of the form F = P exp L for a real symmetric L. In the subspace PH it holds
that det V = ±1, and from (A1) it follows that det F = ±1, and as F � 0 the only solution
is det F = 1. This means that L is traceless. Thus, any solution of (A1) is of the exponential
form for a real symmetric traceless L ∈ PH. Clearly F−1 = P exp(−L), and by considering
the power-series expansion of the exponential it is clear that

V †F−1V = P e−V †LV .
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The equality (A1) then implies that

L + V †LV = 0. (A2)

Conversely, it is clear that any real symmetric L which satisfies (A2) will be traceless and
define a real positive F of determinant 1 which solves (A1). We now find all the solutions of
(A2); for each real symmetric matrix B in PH the combination L = B − V †BV is traceless
and satisfies (A2), and every solution of (A2) is of this form (choose B = L/2). Consequently,
we have found all the solutions of (A1). Finally, returning to the original problem, we obtain
that the solutions of (11) are precisely the matrices of the form

F = F
1/2
0 exp{B − V †BV }F 1/2

0 . (A3)

We can then easily adapt this form to find all the solutions of (20), (27) and (37).
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